
Predicting radio signal modulation scheme with an

ensemble of convolutional neural networks

Benjamin Posnick

1 Introduction

This paper outlines a deep learning approach using ensemble methods to predict the modulation scheme
used for encoding a given signal using samples of its in-phase and quadrature (I/Q) components.

2 Data Preprocessing

2.1 Dataset

The training set Xtrn ∈ R30000×1024×2 contains 30,000 examples, where each example is a matrix Xi ∈
R1024×2 composed of two vectors Xi,I ∈ R1024 and Xi,Q ∈ R1024, representing the in-phase and quadrature
components for a given example:

Xi =
[
Xi,I Xi,Q

]
(1)

The testing set Xtst ∈ R20000×1024×2 is formatted the same, but only contains 20,000 examples.

It is known that deep learning models often require large datasets to obtain good performance. Previous
work on this topic by Li et al 1 employed samples of size 128. Motivated by this, in order to better utilize
the given dataset, each signal in Xtrn and Xtst was partitioned into 4 equal-sized sub-samples such that
X̂trn ∈ R120,000×256×2 and X̂tst ∈ R80,000×256×2. Each of the 4 partitions were labeled with the same label
as the original full-length signal. This was based on the assumption that a given signal could be treated
as 4 separate signals that happen to comprise a contiguous sequence. The examples in X̂trn were treated
independently thereafter. However, for each example in X̂tst, each of the 4 partitions were classified sepa-
rately and the best prediction (based on averaging softmax probabilities) was used to classify the original
full-length signal from Xtrn (see ”Prediction” section).

2.2 Feature Extraction

Using domain knowledge of signals, features were extracted so as to improve the quality of data inputted
into the deep learning model. The same process was applied to both X̂trn and X̂tst – for brevity, we will
denote them both as X̂. Feature matrices Fi ∈ R120,000×256×4 were created for each example X̂i ∈ X̂:

Fi =
[
Fi,I Fi,Q Fi,φ Fi,A

]
(2)

where Fi,I and Fi,Q are the vectors X̂i,I and X̂i,Q, respectively, and:

Fi,φ = arctan2(Fi,Q,Fi,I) (3)

Fi,A =
√
F2
i,Q + F2

i,I (4)

1Li, M.; Li, O.; Liu, G.; Zhang, C. An Automatic Modulation Recognition Method with Low Parameter Estimation Depen-
dence Based on Spatial Transformer Networks. Appl. Sci. 2019, 9, 1010.

1

CLDNN Architecture

Layer Parameters Activation Function

1 1D-Convolution 64 filters, 3×1 kernel SeLU, Batch Normalization

2 1D-Max-Pooling 2× 1 pool None

3 1D-Convolution 64 filters, 3×1 kernel SeLU, Batch Normalization

4 1D-Max-Pooling 2× 1 pool None

5 1D-Convolution 64 filters, 3×1 kernel SeLU, Batch Normalization

6 1D-Max-Pooling 2× 1 pool None

7 1D-Convolution 64 filters, 3×1 kernel SeLU, Batch Normalization

8 1D-Max-Pooling 2× 1 pool None

9 1D-Convolution 64 filters, 3×1 kernel SeLU, Batch Normalization

10 1D-Max-Pooling 2× 1 pool None

11 Flatten N/A None

12 Fully-Connected 128 neurons SeLU

13 Dropout Probability = 0.25 None

13 Fully-Connected 64 neurons SeLU

14 Fully-Connected 10 neurons Softmax

Figure 1: CNN architecture for an individual network

The arctan2 function from NumPy is used instead of the standard mathematical function tan−1(·) because
the former has a range of (−π, π], while the latter has a range of (−π2 ,

π
2) – thus, removing sign ambiguity.

3 Model Architecture

The model used for predicting the signal modulation type was a bagging of convolutional neural networks
(CNNs). The convolutional layers capture spatial information, create feature maps, and reduce the dimen-
sionality of the data, while the fully-connected layers help capture non-linearities in the data. The network
was constructed using Keras and utilizes the Adam optimizer (with a learning rate of 0.0025 and batch size
of 32) and the categorical cross-entropy loss function. As the natural complement for using the softmax
function in the output layer, the predictions were outputted as one-hot encodings. Ten of these networks
were ”bagged” so as to reduce the variance of the overall model. In Keras, this involved averaging the
outputs of the three individual networks.

4 Prediction

During training, each example matrix X̂i in X̂trn of size 256× 4 is treated independently, thus their labels
are predicted independently. Conversely, during testing, recall that each example Xi in Xtst of size 1024× 4
was split into four examples of size 256×4 in X̂tst: X̂i,1,tst, X̂i,2,tst, X̂i,3,tst, X̂i,4,tst. The label l ∈ L – where

2

L is the set of modulation types – of test example Xi is predicted using the four subsamples as follows:

ŷXi,tst = argmax
l∈L

4∏
j=1

P(l|Xi,j,tst) (5)

where the values of P(l|Xi,tst), ∀l ∈ L, are given by the output of the softmax activation function in the
output layer of the CNN. This model achieved 61.820% accuracy on the testing set.

5 Other Approaches

I also attempted a wide variety of other approaches to this problem. In addition to the final features I
decided on, I experimented with the following features:

• discrete Fourier transform coefficients and associated frequency and power values

• statistical analyses of the discrete wavelet transform approximate and detail coefficients

• low-pass filtering of the original signals

• images of the plots of the original signals

• principal components of I/Q data derived from PCA

Throughout the project, I also experimented with the following algorithms and models: random forests;
decision trees; AdaBoost; gradient-boosted trees; support vector machines; k-nearest neighbors; and convo-
lutional, long short-term memory, fully-connected deep neural networks (CLDNNs).

6 Conclusion

6.1 Bottlenecks

I found that large amount of noise in the dataset posed a large bottleneck. Because of this noise, models
in which I used engineered features (e.g. statistical analyses of DWT coefficients) tended to greatly under-
perform as compared to deep learning approaches. Also, the high dimensionality of the dataset made training
require significant amounts of time, which prompted me to focus on developing models and approaches that
reduced the dimensionality, such as those that utilized pooling layers.

6.2 Learning Outcomes

I learned that there are times where domain knowledge-based feature engineering is no match for deep
learning, especially with noisy data. The power of machine learning often comes from the ability of algorithms
to decipher what is and what is not important in the data on their own – without expert feature engineering.
I believe that by tackling a problem as broad and open-ended as this one, I was able to learn a lot about
how to iterate through the model selection process. Given that I tried so many different algorithms and
architectures, I feel that I have become fluent in using both Keras and sklearn and that I also better
understand the material from the course.

3

