Proving the t-Distribution Arises from Sampling
Normally-Distributed Populations

Benjamin Posnick

Claim 1. The t-distribution arises from sampling normal populations when the variance is unknown and is
taken from the sample itself.

Proof. The probability density function fr(-) of the ¢-distribution is given as follows:
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where T'() is the gamma function. Our goal will be to show that a random variable T constructed from
sampling n points from normally-distributed populations of unknown variance has exactly this probability
density function, with v = n — 1 degrees of freedom.

Let X1,...,X, be independent and identically distributed (i.i.d.) normal random variables, with unknown
mean ;. and unknown variance o2. We define the random variable T as follows:
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where S is the sample standard deviation of X7,..., X,:

T =
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We can rewrite T as follows, where Z is the standard normal random variable, i.e. Z ~ N(0,1):

where the last line comes from the fact that E[X] = p and Std(X) = /Var(X) = /2 2. Using
equation (3), we obtain:
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where V = >0 | (X”UQX) . Since V.= >, (X’UQX) = 012)5 , by Cochran’s theorem, it follows that
V ~ x2_,,ie. V has chi-square distribution with n — 1 degrees of freedom. This comes from the fact that
the square of the sum of two normals is exponentially-distributed, and the sum of exponentials is gamma-

distributed, where the chi-square distribution is the special case of this exponential.
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We now want to find the probability density function of T'. If we define X = 1/% = \/ —=5—, then our
expression for T' becomes:
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The probability density function of X is found as follows:
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Setting ¥ = n — 1 and simplifying, we obtain:
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We will now prove a useful lemma that will aid us in our proof of claim 1.

Lemma 1. Z and X are independent random variables.

Proof. We can prove this claim by showing that X and S? are independent random variables, since Z was
derived from X, since and X was derived from S2. We know that:
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We know that inside the summation over i € {1,...,n} in the equation for the sample variance, we have the
term X; — X:
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Since the X;’s are i.i.d. normally-distributed and the sample mean is also normally-distributed, it follows
that their sum is also normally-distributed:
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We also know Vi € {1,...,n}:
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This implies that the covariance matrix ¥ for the random vector V = (X, X; — X,..., X, — X)7 is given
by:

Var(X) Cov(X,X;—X) ... Cov(X,X,—X)

5 Cov(X; - X,X) Var(X;—X)

Cov(X, — X, X) e Var(X, — X)

Since Cov(X; — X, X) = Cov(X,X; — X) =0, Vi € {1,...,n}, ¥ is a diagonal matrix, and because it is
also square, it follows that it is symmetric too, i.e. ¥ = X7. Since ¥ is upper-triangular, it follows that
the diagonal entries are its eigenvalues. Since all of the eigenvalues are variances, all of the eigenvalues are
non-negative. Because of this and the fact that X is symmetric, 3 is also positive semi-definite. Therefore,
it follows that V is multivariate normal with mean vector M = (p, 1, ..., ).

Since V' is multivariate normal, any pair of its components which are uncorrelated are also independent.
Since we showed Cov(X; — X,X) = Cov(X,X; — X) = 0, Vi € {1,...,n}, it follows that all pairs of
random variables in V are independent. This also implies then that X and U = (X; — X, ..., X, — X)7T are



independent. Since we know that UTU = 377" | (X; — X)? = (n—1)52, where S? is the sample variance, we
have thus shown that X and S? are independent. O

Now that we have proved lemma 1, we can use it to finish our proof of claim 1. The random variable T is
the quotient of Z and X, where X and Z are independent by lemma 1, so its probability density function
is given by the following, where fz(-) is the probability density function of the standard normal random
variable:
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We can use u-substitution, with u £ s? = du = 2sds = ds = % = s=yu
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The integrand of this integral has a similar form to the gamma probability density function fg(+), for some
arbitrary random variable G ~ Gamma(k, ), where k is the shape parameter and 6 is the scale parameter:
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Thus, we can match parameters between our integrand and the gamma PDF to simplify our expression as
follows:
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Rearranging (5) and plugging in the above parameters, this implies that:
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Plugging back into (4) and simplifying, we obtain:

/000 fe(u)du
L

=1, gamma defined on (0, o)

12l 1 (vl 2 \*
= — V2 — _—
2 P(%) 2 2 t2+1/
F(V;Ll) 1 21—u/2 . vl
= V2
L) vor 2 (2 +v)" %
v _ v+l
_ () 1 guy2,5 (V)2
I'(5) Vor =N
T4t 1 22 u<t2+u>"¥l
= 1/2 J— p—
(%) Vomo—%" v v
T VB (th)ﬁl
B F(%) \/271’y*y-§1 14
RGO I AN A
T A\ v

We see that this final result is exactly equal to (1), thus proving the claim.



